

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

(AUTONOMOUS)

B.Tech III Year II Semester Regular & Supplementary Examinations October-2020 HEAT TRANSFER

(Mechanical Engineering)

Time: 3 hours

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- **1 a** Name and explain the mechanism of heat transfer.
 - b Calculate the rate of heat transfer per unit area through a copper plate 45 mm thick, 6M whose one face is maintained at 350 °C and the other face at 50 °C. Take thermal conductivity of copper as 370 W/m °C.

OR

2 a What is convection heat transfer?
b Derive the general heat conduction equation in Cartesian coordinate.
3M
9M

UNIT-II

- **3** a Derive an expression for heat conduction through a plane wall. **6M**
 - **b** A reactor's wall, 320 mm thick, is made up of an inner layer of fire brick ($k = 6M = 0.84W/m^{0}C$) covered with a layer of insulation ($k = 0.16 W/m^{0}C$). The reactor operates at a temperature of 1325 ^{0}C and the ambient temperature is 25 ^{0}C . Determine the thickness of fire brick and insulation which gives minimum heat loss.

OR

- 4 a Sketch various types of fins. Give examples of use of fins in various engineering 6M applications.
 - b Calculate the amount of energy required to solder together two very long pieces of bare copper wire 1.5 mm diameter with solder that melts at 190 °C. The wires are positioned vertically in air at 20 °C. Assume that the heat transfer coefficient on the wire surface is 20 W/m² °C and thermal conductivity of wire alloy is 330 W/m °C.

UNIT-III

- 5 a What is convective heat transfer? Distinguish between free and forced convection. 6M
 - **b** Derive the expression for Reynolds number and how flows are determined by **6M** Reynolds number?

OR

- **6 a** Mention correlation for flow over a horizontal plate.
 - **b** A horizontal plate measuring 1.5 m x 1.1 m and at 215 0 C, taking upward is placed **7M** in still air at 25 0 C. Calculate the heat loss by natural convection. The convective film coefficient for free convection is given by the following empirical relation $h = 3.05(T_{f})^{1/4} W/m^{2} {}^{0}$ C. where T_{f} is the mean film temperature in degree Kelvin.

Max. Marks: 60

6M

5M

UNIT-IV

7	a b	What are the applications of boiling? Explain briefly the various regimes of saturated pool boiling with diagram	2M 10M
		ŬK.	
8	a	Derive the expression for Logarithmic Mean Temperature Difference (LMTD) in case of counter flow.	6M
	b	The flow rate of hot and cold water streams running through a parallel flow heat exchanger are 0.2 kg/s and 0.5 kg/s respectively. The inlet temperatures on the hot and cold sides are 75 0 C and 20 0 C respectively. The exit temperature of hot water is 45 0 C. If the individual heat transfer coefficients on the both sides are 650 W/m ² 0 C,	6M
		calculate the area of heat exchanger.	
_			
9	a	What is Stefan Boltzmann Law? Explain the concept of total emissive power of a	6M
	_	Black Body.	
	b	Write short note on radiation shields.	6M
		OR	
10	a	State the following law:	4 M
		Krichhoff's law 11) Planck's law	01.4
	b	Calculate the net radiant exchange per m ² area for two large parallel plates at temperature at 427 °C and 27 °C respectively. ε (hot plate)=0.9 and ε (cold plate)=0.6. If a polished aluminium shield is placed between them, find the percentage reduction in the heat transfer, ε (shield)=0.4.	8M
		*** END ***	